
Lab 0: An introduction to the R environment

Guoliang Ma

STAT 473/573 lab session
Spring 2023

1

Setup and Installation

The executable and the IDE

This tutorial is for Windows OS. For mac OS, the installation might be
slightly different, but the code shouls work the same way.

1. is a statistical computing language. You need to install it before
install RStudio.

2. Go to
https://cran.r-project.org/bin/windows/base/
to download and install .

3. An Integrated Development Environment (IDE)gives you more
convenience to write your code. RStudio is the IDE we use for this
course.

4. Go to
https://posit.co/download/rstudio-desktop/ and
download RStudio once you have installed . 2

https://cran.r-project.org/bin/windows/base/
https://posit.co/download/rstudio-desktop/

Layout of RStudio

1. The default layout of RStudio

3

Layout of RStudio

2. The source code area shows your current file. Select a chunk of
code and press Ctrl + Enter to execute them.

3. The console area helps you write short (typically one-line) testing
code. When this console is activated (by clicking anywhere in the
console), pressing Enter executes the current line of code.

4. The variable area shows you the variables generated, including
the data you loaded from elsewhere.

5. The plots/help area shows the plots you make. In the console,
type ? followed by any command, and the help documentation
will pomp up in this area.

4

R source code and R markdown

Once you install and RStudio, run RStudio. An empty file will be
opened for you. This file is the .R file. In this course, we work with
two types of files: .R and .Rmd.
"mind the capitalization!

1. .R file is used for running “normal” code. When the intention is
just coding and computing, use .R. You will use .R most of the
time for your own statistical analysis/computing task.

2. .Rmd file is used for documentation. It can be compiled and a .pdf
or .html file will be the output. You will use .Rmd most of the
time for your lab homework.

5

Basics

Use the Console

The Console is a powerful interpreter of the language. Meaning
that you don’t have to wait before your code to be translated into
machine code. Instead, simply hit Enter and see the results.

1. basic calculation

6

Use the Console

The Console is a powerful interpreter of the language. Meaning
that you don’t have to wait before your code to be translated into
machine code. Instead, simply hit Enter and see the results.

1. basic calculation

7

Data types

We mainly works with variables in . The data types we’ll see include:
numeric, character, and logical. You need a variable name to hold the
values of the variable. Use <- (< and -) to assign values to a variable.

8

Data types

When a variable is created, it is recorded in the variable area.

1. Note the value of a character variable is quoted with ” and ” .
2. Note also that logical values are TRUE and FALSE instead of

True or true.
9

Use the source code area

Commands executed in the Console area will not be stored once you
terminate the Console . However, we need to save the code for further
uses. We write the code in the .R file in the source code area.

10

Data structures: vector

Data structure in differs from data types we just saw. We’ll use
vector, list, matrix, and data frame.

1. Vectors in can save a sequence of values of the same type. Use
c() and , to create a vector.

11

Data structures: vector

Data structure in differs from data types we just saw. We’ll use
vector, list, matrix, and data frame.

1. Vectors in can save a sequence of values of the same type. Use
c() and , to create a vector.

12

Data structures: vector

1. A simpler way to create sequences is to use : .
sequence <- 1:5

2. How to create a sequence starting from 1, to 99, with step size 2?
Type ?seq in the Console to find out.

3. What will happen if I assign different types to a vector?
difType <- c(1, "a", 5)

13

Data structure: vector

1. Slicing a vector:
1.1 Use [and] to slice a vector:

difType[2]
1.2 Note the starting index of a vector in is 1
1.3 For the vector from 1 to 99 with step size 2, how can I get the last

25 numbers?

2. Adding new elements: How do I append 100 as the 51st element
of the vector?

3. Modifying existing values of a vector
3.1 How to change the first element to 2?

Hint: use the index.

4. Deleting elements from a vector

14

Data structure: matrix

In , a matrix is a two-dimensional structure with fixed numbers of
rows and columns.
nums <- 0:11+1
Try the following two code. Can you see the difference?
matrix(nums, nrow=3)

matrix(nums, nrow=3, byrow=TRUE

? what is the difference between the following
nums <- 0:11+1
nums <- 0:(11+1)

? what is the output of
matrix(0:12), nrow=3

15

Data structure: matrix

1. size of a matrix: dim(mat)

2. slicing a matrix: use double indexing: mat[1, 2] instead of
mat[1][2].
? How would you select a submatrix?
? How would you select the second columns of a matrix?

3. adding a row/column to a matrix by using rbind/cbind

16

Data structure: data frame

We have a class of three students: Alice, Bob, and Charlie. Their ages
are 21, 19, 25. Their majors are DS, PSYC, and CHEM. How do we
store this information?

We can use the cbind function:
d <- cbind(studentName, studentAge, studentMajor)

17

Data structure: data frame

? What is the type of d ?

students <- data.frame(studentName, studentAge,
studentMajor)

? What happens in the variable area?

18

Data structure: data frame

We will seldom add rows to a data frame. We frequently add columns
to a data frame.
students$studentGrade <- c(95, 90, 100)

? What happens to your student data frame?

"Note the $ operator in .

19

Data structure: data frame

Loading and saving data from and to .csv files.

1.
d <- read.csv("./data.csv")

2.
write.csv(students, "./students.csv")

? Why is there no <- in the output command?
? How would you read data from other sources, e.g., .dat, .h5,

etc?

20

packages

R packages

1. is most powerful when you use its packages. We will use
knitr, dplyr, tidyr, readr, ggplot2, purrr.

2. To install dplyr, in the Console , stype
install.packages("dplyr")
and Enter . Do the same for the other packages.

3. We introduce two ways to use an R package. You can
3.1 load the whole package and use its functions by

library("dplyr")

select(data, colname)
3.2 call the function of an installed package without loading the whole

package
dplyr::select(data, colname)

21

The knitr package: Writing R markdown

The knit package is required to convert a source .Rmd to a .pdf or
.html.

1. The title is at the beginning of a .Rmd file, surrounded by two
“triple hyphens”:

An example title is:

title: "Solution to 473 Lab 1"
author: "Guoliang Ma"
output:

pdf_document: default

html_document: default
--- 22

The knitr package: Writing R markdown

2. Some keyword letters
2.1 # : gives you level-one header
2.2 ## : gives you a level-two header
2.3 ̀ ̀ ̀{r} and ̀ ̀ ̀ (the one above Tab): are used to surround code.
2.4 # within an R code chunk defined by ̀ ̀ ̀{r} and ̀ ̀ ̀ : comments of

the R code.
Otherwise, type “normally” as you do with MS word or any other
text editors.

3. Compile your .Rmd with knit. Use ▽ to select output format.

23

The dplyr package and the Pipe workflow in

1. In , = is less frequently used as an assignment operator.
Instead, <- is more popular. For example, you want to create a
variable a with value 3, use
a <- 3
Check out
https://stackoverflow.com/questions/1741820/
what-are-the-differences-between-and-assignment-operators
for reasons.

2. When indicating default function parameters, use = .

3. Built in dplyr, tidyr, and many other packages, is the operator
%>% . This is called the Pipe workflow.

24

https://stackoverflow.com/questions/1741820/what-are-the-differences-between-and-assignment-operators
https://stackoverflow.com/questions/1741820/what-are-the-differences-between-and-assignment-operators

The dplyr package and the Pipe workflow in

dplyr is a powerful tool for handling data. For example, consider this
data set.

We would like to calculate the group mean of mpg grouped by gear,
number of gears.

25

The dplyr package and the Pipe workflow in

The workflow is group by gear

⇒ calculate means for grouped data .

The pipe workflow uses %>% to combine the workflow into one chunk of
code:
data %>%
group_by(gear) %>%

summarise(meanByGear=mean(mpg))

There are many other useful functions in dplyr. When you want to
achieve specific aims, search e.g., “group mean dplyr.”

26

Other dplyr functions

1. select: select columns from a data frame

2. mutate: create/change the values of a column of a data frame

3. subset: select observations (rows)

27

	Setup and Installation
	[height=1.8ex,keepaspectratio]Rlogo.png Basics
	[height=1.8ex,keepaspectratio]Rlogo.png packages

